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Abstract true if PIMs are based on commodity DRAM technology.

Mass market applications for such a commodity DRAM
Memory may be the only system component that is morePIM range from systems-on-a-chip, as in a cell phone or
commoditized than a microprocessor. To simultaneously PDA, to the memory or entire node in a future commod-
exploit this and address the impending memory wall, pro- ity cluster. As such, PIMs have the potential to exceed the
cessing in memory (PIM) research efforts are considering volumes of the current microprocessor market. Thus, they
ways to move processing into memory without significantly may influence the design of next-generation microproces-
increasing the cost of the memory. As such, PIM devicessors and memory systems and have the potential to be the
may become the basis for future commodity clusters. Al-basis of future commodity clusters.
though these PIM devices may leverage new computational One approach to PIM technologies is to architect the
paradigms such as hardware support for multi-threading PIM device specifically for parallel computing. This seems
and traveling threads, they must provide support for legacy counter to the use of such devices in cell phones; however,
programming models if they are to supplant commodity most PIM approaches are considering multiple processors
clusters. This paper presents a prototype implementationper DRAM device. Thus, the only difference is that the mul-
of MPI over a traveling thread mechanism called parcels. tiprocessing capabilities would need to be extended across
A performance analysis indicates that the direct hardware multiple chips. Indeed, some PIM researchers believe that
support of a traveling thread model can lead to an efficient, single chip and massively parallel systems should use the
lightweight MPI implementation. same parallelism mechanisms. Multi-threading and travel-
ing threads (based on parcels) are two of the techniques that
) are being proposed as parallelism mechanisms. In architec-
1. Introduction tures such as PIM Lité] or MIND[ 23], hardware support
will be provided to switch between multiple threads in a
With the memory wall looming for microprocessors, single cycle. More interestingly the communication mech-
there is a variety of efforts underway to determine how anism, parcels, will contain thread state to allow extremely
best to avoid it. One active area of research is processdightweight remote invocation (or migration) of threads.
ing in memory (PIM) technology. The PIM approach in- Achieving maximum performance from such PIM based
tegrates processors in the memory device. The advantagesystems may require a change from the message passing
are a dramatic increase in memory bandwidth and a signifi-model that is widespread today; however, it is critical for
cant decrease in memory latency. Many researchers believd’IM based systems to provide reasonable performance on
that these devices can yield a large improvement in perfor-current codes. This paper discusses a prototype implemen-
mance with a modest increase in cost. This is particularly tation of MPI using traveling threads. The prototype imple-
*The bulk of the work described here was done at Sandia National Labs.mentaFIon Conta_uns a minimal number of commonly US.Ed
The PIM were concepts developed at Notre Dame, and funded by JPL un-Operations, but it serves as a platform to evaluate MPI im-
der the HTMT project, by DARPA under the DIVA project, and by DARPA  plementation issues on PIMs. Initial analysis of this proto-
through Cray Inc. as part of the HPCS program. _ ~ type has indicated that PIMs perform some MPI operations
tSandia is a multiprogram laboratory operated by Sandia Corporation, more efficiently than current commodity technologies.

a Lockheed Martin Company, for the United States Department of Energy . . . .
under contract DE-AC04-94AL85000. The remainder of this paper is organized as follows. The




PIM Cluster o other nodes. First, there is nothing other than these chips.

Second, they allook like memory; requests for access is

bﬁz: throughmemory addressesvith the LU that handles the
processing for any particular request simplyaamonymous

1 o Domianee \ Pipelined X :
¥ EEEE 177 B processorthat just happens to beearbythe designated
A PIM Chip memory location. An All-PIM system is thus a sea of mem-

PARCEL: [TagerAdress | Commad | Operands | Paylowd ] ory about which requests for access and/or processing flit
on the basis of memory addresses. Third, these requests
Figure 1. PIM System are much more than dumb memory accesses. They can

be requests for serious processing to occur at the targeted
address, ranging from atomic memory operations (AMOSs)
(e.g. add to memory), to remote method, or even complete
PIM computational model used for this work is presented Program invocations. Finally, because there are many MUs
in Section2. This is followed by details of the MPI im-  in & system (potentially millions), such a system appears as
plementation for this model in Sectidh The evaluation ~ some sort of very large multi-threaded shared memory ma-
methods used are discussed in Sectipand some prelim- ~ chine.

inary results are shown in Sectién Section6 presents a We term the communication mechanism that transports
comparison to related work. Finally, conclusions and future these requests gercels(PARallel Computing Elements).
work are presented in Sectiahn As with a traditional dumb memory request, a parcel holds

at least a target memory address (used for routing), a com-
mand, and/or a few pieces of data (simpperand}. There
may also be a larger dapayloadto transport blocks such

as cache lines. In an All-PIM system, however, the com-

li bedded dloai q mand may also be interpreted as a program counter, and the
Intelligent RAM[27], embedded RAM, or merged logic an operands as a small set @fgisters Novelty comes into

merri:ory, combC;.nes ?_%Fh high speed logic aln(_d degse DRAM play in considering computation#itireadsin size between

(cj)n the same |ef. 'Ilsb?rrangehmerk;t egp ,Od'tﬁ the tremﬁn'the single operation AMOs and the arbitrarily long node-
Ouf) amounts o aveg a edon-c g) an W'It (Ipotentla Y resident threads resulting from an RPI. In particular, small

terabytes per second) and provides very low latency ac-y, o5 jetscan represent some short sequence of processing

cess (10 ns or better) to a large amount of local state (UPy, 5t can be done at one node, and thesveto some other

to 2048 bits at a time). While this has clear application \,\; associated with the next piece of data. Treenmand

to systems-on-a-chip, its impact on the high performance 5, operandscapture the thread state, while the payload

community is just beginning to be felt. To date the chips may be used for either blocks of data, ocacheof sorts

that have been built for standalone high end applications i «an minimize movements to retrieve previously visited
have for the most part supportednventionalexecution datap(]

models - pure SIMD (e.g. Terasys) to pure MIMD (e.g.
Execube] 7]). Other experimental systems have still relied
on a conventional CPU for overall control or centralized
processing (e.g. DIVA[1]), or looked to the outside world
as anSMP on a chipwith message-passing link interfaces
between chips (Blue Gend).

This paper assumes a newly emerging view of PIM-
based supercomputers (Figurp[13, 15, 7]. In this All-
PIM system, there is nothing but PIM chips, with each
PIM chip containing multiple self-contained memory units . )
(MUs). Each MU has an attached logic unit (LU) on which 3- MPI Implementation using Parcels
is implemented a specially designed processor whose ISA
can take advantage of the wide words that can be fetched The goal of MPI for PIM is to provide a viable “proof
from the MUs, and the high bandwidth and low latency with of concept” and a testbed for exploring the issues of imple-
which such accesses can be performed (e.g. PIM Lite). Bymenting MPI on a PIM system. Specifically, it explores the
2007, for example, such chips could contain dozens of sucheffects of a highly multi-threaded programming model on
LU/MU nodes, each running at several GHz and hosting 10sMPI's complexity and performance. As a limited testbed,
of MB in its MU. MPI for PIM implements only a subset of the MPI-1.2

Equally important is how any of these nodes view the standard(€]. MPI_Barrier() , and point-to-point com-

2. Processing-In-Memory

Processing-in-Memory (PIM)1[, 7, 21] also known as

For this paper we assume that individual MU/LU are run-
ning conventional node level applications programs as one
or more of their threads. When such programs perform an
MPI function, some mix of parcel-based threads performs
the bulk of the work of moving the message from one node
to another. We assume that the LU nodes are much like a
second generation PIM Lite - 4 stage pipelined, with each
stage supporting a separate thread.



munication were implemented. Support for user datatypes,
and multiple communicators were not.

\ Rendezvous
3.1. Effects of threading MPI_ISend() Migrate To
Destination

MPI for PIM uses pervasive multi-threading to achieve o D;:T’ Ch* >
concurrency, reduce the complexity of the implementa- g Migrate to Posetgd
tion, and hide latency. To avoid the traditionally high E Deﬁa"m Post
costs of thread synchronization and programming, MPI for v Check Dummy
PIM leverages two features of the PIM programming model: Test Posted Expected? V
fine-grain locking and thread migration. V\E/;i']}f;?r

Conventional single thread implementations of MPI of-

ten have difficulty achieving true concurrency with non-

blocking communication. After requests are enqueued, the ! Migrate to

. \ Source & Copy
status of the request can only be advanced when a call is : Data

; . Deliver to Deliver to

made to MPI. Thus, whenever any MPI call is made, a sin- Unexpected Posted Buffer *
gle thread MPI must iterate through its list of outstanding | | Migrate to
requests and attempt to update their status. This can resultin Pty
significant overhead as the MPI implementation must “jug-
gle” all outstanding requests whenever an MPI call is made Thread

[24]. By using threads, MPI for PIM avoids juggling re-
guests. Requests are assigned a thread which can advance Figure 2. Implementation of MPIl_Isend() in
the request without having to wait for an MPI call. MPI for PIM

Fine-grain interwoven threads can also reduce or hide la-
tency. For example, a call tmemcpy() can be divided
among several threads, allowing the parallelizing of the
copy and fully utilizing the processor pipeline by avoiding
stalls.

Traveling threads allow the communication of not just

“dumb” data, but also a thread of execution. In MPI for gach queue member is protected by a full empty bit lock,
PIM, this means that a receiving process does not have tGnstead of a single lock for the entire queue. This allows
dedicate resources to monitoring incoming messages angytiple threads to traverse the queue concurrently, and the

responding to them. Instead a sent message causes a thre@ghividual locks allow modifications to queue elements to
migration to the destination process. Once there, the sendye stomic.

ing thread continues execution, performing any required re-
source management or copying. Because each incoming&3_
message is a thread, it can “look after itself.” This avoids
having to “juggle” multiple MPI requests.

(for eager messages) or post a “dummy” entry (for
rendezvous messages).

Implementation of MPI_lsend()

All calls to MPI_Isend() spawn a new thread. This
thread takes one of two paths of execution, depending on the
message size, as illustrated in FigdreDashed lines show

) ) _ the flow of the calling thread with solid lines illustrating the
Each MPI process has two main queues which coordi- fjow of the Isend thread.

nate communication between the threads on that node: Data buffers for “Eager” messages (below 64K) are im-

3.2. Key Data Structures

mediately assembled into a parcel for transfer across the
network. Once assembled, tMPl_Isend() request can
be marked as “done” and the thread will migrate to the des-

e Posted Queue: contains MPI requests for re-
ceive operations which have posted a buffer to be re-
ceived into, but which are not yet completed. Calls to

MPIIrecv()  add to this list. tination process. Upon arriving, the Isenq thread checks the
posted queue for a matching buffer. If it finds a match,
e Unexpected Queue: contains requests from it delivers the message data. Otherwise, the thread allocates

messages which arrived at an MPI process, but coulda suitable buffer and places a request onuthexpected

not find a posted buffer to be copied into. These mes- queue .

sages will allocate a buffer and copy their data to it ~ Messages larger than 64K utilize a rendezvous proto-
col. The Isend thread migrates to the destination node and



queue for a match.

No
) =

Yes

4. Evaluation Methods

Yes No
Test o The initial comparison of MPI for PIMs and commodity
v processors is focused on measurements of the complexity
of the code paths for some core MPI routines. Thus, it is
Il SIS ] (O L oSt based on a simplistic microbenchmark. Traces of this mi-
CE”%,'W‘I | | crobenchmark under a variety of possible usage scenarios
read il

were taken and compared for MPICH 1.2.5 and LAM-MPI
6.5.9 on a PowerPC and for MPI for PIM on a simulated
PIM architecture. This section describes the benchmark and
the methodology that was used for tracing and simulation.

Check

main() MPI_Probe() > Unexpected
- Queue

4.1. Benchmark

Figure 3. Implementation of MPI_Irecv()  and

MPI_Probe() in MPI for PIM The microbenchmark] used for this evaluation was

written at Sandia National Labs to consider the impact
of posted versus unexpected receives. The code uses
a combination ofMPI_lrecv , MPI_Send, MPI_Recv,
MPI_Barrier , MPI_Probe , andMPI_Waitall  to con-
trol the percentage of messages that are unexpected. The
test sends 10 messages of parameterizable size in each di-
X . rection (for a total of 20 sequential sends). This benchmark
thread will then return to its source node, and transfer theWas used for this analysis because it effectively exercised
message data back to the Wa|t|ng bufer. .. asmall set of the most commonly used MPI routines un-

If a rendezvous send cannot find a posted buffer, it will der varying usage scenarios. This allowed us to vary the

post a “dlgmmy”fmes;a?fe envtt)alope to lhmaell xty)alected code paths taken and study the impact of those code paths
queue and wait for a buffer to become available. By post- 1, jnstryction count, memory references, and instructions
ing to theunexpected queue , calls toMPI_Probe() é)er cycle (IPC)

are made aware of the rendezvous message. Also, th
“dummy” request preserves ordering semantics by ensuring4 2. Trace Based Analysis
that receive requests will find and match incoming messages "
in the correct order. When a recieve matches this request it
modifies the “dummy” request to inform the waiting unex-
pected message thread where the recieve buffer is.

checks for a posted buffer. If it finds such a buffer the thread
will claim the buffer and prevent other threads copying data
into it by removing it from thgosted queue . Thelsend

Traces for the baseline conventional implementations
(LAM and MPICH) were gathered on an Apple Macintosh
Power Mac with a PowerPC MPC7450 (&Y processor
running at 1Ghz. This platform was running Darwin ker-
nel version 6.6 (Mac OS X 10.2.6). Tlaenber utility [ 2]

was used to gather instruction traces of the microbenchmark
described in Sectiod.1 using both LAM and MPICH im-
plementations of MPI. These instruction traces were then
converted to an architecture independent format called TT7
for further analysis.

3.4. Implementation of MPI_Irecv() and
MPI_Probe()

MPI_Irecv() andMPI_Probe() both follow some-
what similar paths (Figur8). BecauseéMPl_lrecv() is
nonblocking, it begins with a thread spawiP|_Probe()

is blocking, so it is does not execute in another thread. Execution of MPI for PIM was performed on a PIM Ar-
MPI_Irecv()  first checks the status of its request, as cpjsactyral simulator, which can also generate traces. The

the request may have already been completed by an incomz, itecture simulated mirrored a possible 2nd generation

ing send. If the request has not been completed, the IreCvp|\y | jte The MPI for PIM source code was instrumented
thread checks thenexpected queue foramatch. Ifn0 iy special tracing functions so instructions in the trace

meg[ch IS found, it posts its req(;Jes_t to I]bmsted_ qLLJ;lue could be categorized into broad categories (see Sestin
and exits. To preserve MP| ordering semantics,Lthex- To generate execution times for MPI for PIM, the traces
pected queue s locked while it is being checked and o0 the architectural simulator were simulated on a PIM

the receive is posted. Trace-based simulator.
MPI_Probe() repeately checks theinexpected



Section4, only the aspects of MPI that were implemented

Table 1. Configurations used for simulation in MPI for PIM were analyzed. Comparisons are presented

H Variable ‘ simg4 ‘ BIM H for eager (256 bytes) and rendezvous (80 KB) transfers.
memory lat., open page| 20 cycles 4 cycles 5.1. Overhead Reduction
memory lat., closed page 44 cycles 11 cycles
L.2 Iat_ency 6 cycles NA An important aspect of MPI for PIM is a reduction in
P!pel!nes - ! . 1 the overhead of MPI calls. MPI overhead includes time
Pipeline Depth 4 (integer) | 4 (interwoven) spent performing tasks other than network communication

and buffer copies. With a pervasively multi-threaded imple-
mentation, MPI for PIM can avoid much of the MPI state
To provide a fair comparison between MPI for PIM and  swapping, or “juggling”, that must occur in a single thread

other implementations, sections of the LAM and MPICH MPI. MPI for PIM executes fewer overhead instructions
traces that concerned functionality not implemented in MPI than LAM, and usually fewer instructions than MPICH
for PIM were discounted. These include functions that dealt (Figure4(a-b)). The PIM implementation also makes fewer
with specifics of the network interface, bookkeeping, de- memory references (Figurkc-d)). The reduction in mem-
bugging, datatype or communicator lookup, byte ordering, ory references is compounded because the PIM processor is
and parameter checking. Such functions were identified andcloser” to the memory. So, memory references on PIMs
any instructions in the trace which executed in these func-tend to be lower latency than on conventional machines.
tions were removed. To accomplish this, a disassembler wasCombining the reduction in memory references with the im-
used to find mappings between instructions in the TT7 Traceprovement in memory access time yields a significant re-

and functions in LAM or MPICH. duction in the time spent accessing memory.
_ _ ) Because MPI for PIM’s memory references are fewer
4.3. Simulation Based Analysis and faster, its overall IPC tends to be high. MPICH suffers

from a high branch misprediction rate (up to 20%), which

Cycle counts for execution on the PowerPC were ob- usually limits its IPC to less than 0.6. LAM’s IPC for ea-
tained using theimg4 cycle accurate simulator from Mo- ger messages is high, however, for longer messages it suf-
torola [L9]. This simulator produced accurate cycle counts, fers from data cache misses which limit its performance.
instruction mixes, pipeline stall counts, and cache perfor- These differences in IPC and executed instructions result in
mance data. Cycle count estimates for the instruction cat-an overall cycle count which is lower than the conventional
egories for each function shown in Sectibr? were esti- MPIs. For eager sends, MPI for PIM averages 57% less
mated using output frormimg4 . Pipeline stall counts for  overhead than MPICH and 42% less than LAM. For ren-
memory instructions were used to calculate an approximatedezvous sends, MPI for PIM averages 58% less overhead
IPC for memory instructions. Given this number, the num- than MPICH and 78% less than LAM.
ber of memory instructions, and the overall number of cy-  The actual time spent in MPI would depend on the fab-
cles to execute the function trace, it was possible to estimaterication process used in a PIM processor. However, a PIM
the average IPC of non-memory instructions for that func- pipeline would generally be much simpler than a conven-
tion. The relative number of memory to non-memory in- tional processor and would probably be able to run at a
structions belonging to each instruction category were com-similar clock rate. Additionally, as conventional proces-
bined with the IPC estimates to produce a cycle estimate forsor speeds grow, the latency between memory and proces-
each category. sor would also increase further limiting conventional per-

The PIM Architectural simulator is based off of the Sim- formance.
pleScalar tool setd]. It extends the PISA ISA to add extra
PIM functionality such as thread migration and the manipu- 5.2. MPI Function Analysis
lation of Full/Empty Bits. It can simulate multiple PIMs and

includes support for adjusting several architectural features T explain the performance differences between MPI for

(Tablel). PIM and conventional single threaded MPIs, it is useful to
examine several of the major MPI calls. The overhead in
5. MPI Performance Impact these calls can be classified into one of four behaviors:

e State Setup/Update: Initialization and update of
MPI Requests and internal state dealing with the
progress of a function.

This section presents results comparing various aspects
of the performance of the MPI for PIM prototype and MPI
implementations on commodity platforms. As described in
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Figure 4. Total instructions (excluding network instructions) executed in MPI routines for benchmark appli-
cation using (a) eager sends and (b) rendezvous sends; Number of memory accesses (excluding network
instructions) by MPI routines for benchmark application using (c)eager sends and (d) rendezvous sends.
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Figure 5. Total CPU cycles spent in MPI routines for benchmark application for (a) eager sends and (b)
rendezvous sends, excluding network instructions.
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e Cleanup: Deallocation of data structures, unlocking
of synchronization controls, removal of requests from

lists or queues. oo | ‘ ‘ ‘ LAMLQ&%LT(AS‘E‘%SE g ]
total) ---2K--

e Queue Handling: Iterating through lists or queues L20s06 - MPS;%@&&@ :E—; ]
to advance requests or match envelopes. May also L PIMI (improved memc) @
include searching hash tables for matches (LAM) and let0[g.. Ko — 7
acquiring synchronization locks (MPI for PIM). - QE; """"""""" Koy

9 B Ko

e Juggling: Time spent switching from the MPI con- g 600000 | = éé *
text of one request to another in single threaded MPIs.

This generally occurs when there are multiple out- 400000 |- :
standing non-blocking requests and MPI must check B B B B e e e e B B
each to see if progress can be made on them. 2none i
[} L 4 [ J @@ { ] L 2 [
MPI for PIM generally executes MPI functions with less %o 2 w0 % 80 100

overhead than single threaded MPIs. This improvement Percentage of Posted Recelves

comes from several sources such as: faster memory ac- @)

cesses, reduced state setup for the rendezvous protocol, and ~ ** ‘ ‘ P G

elimination of the need to “juggle” multiple requests. 70000 - Mmé”ﬁ'(?niéi‘é%% %

MPI for PIM requires fewer cycles to setup and maintain s S PIM o) - B

state in several key MPI functions, especially when compar- ~ *®| Tk PVt (mprovedmemepy) =@
ing the rendezvous protocol (Figuééa-b)). This is due to 50000

the use of “intelligent” traveling threads to perform sends.
A conventional MPI must expend cycles initializing and up-
dating a send request, and then interpreting the incoming ~ 30000
data and dispatching it based upon protocol. In effect, a
conventional MPI must setup the state information for send
twice. In contrast, an incoming thread in an MPI based upon 10000
traveling threads is already initialized and can “dispatch it- e = e
self”. 0 20 40 éo éo 100
Another advantage of MPI for PIM is that MPI func- Percentage of Posted Receives
tions do not have to switch contexts from one MPI request (b)
to another to advance pending requests. The overhead of ryop——
this “juggling” of requests can be quite significant (Figure 1] 1
6(c-d)), especially since this class of behavior tends to re-
quire a large number of memory accesses (Fidifee=f)). o8| 1
In LAM, it accounted for 14% to 60% of MPI overhead
instructions, depending on the number of outstanding re- 06 |
quests. In MPICH, it accounted for between 18% and 23%. &
There are some cases where MPI for PIM per-
forms poorly compared to LAM or MPICH. MPICH’s
MPI_Send() can outperform MPI for PIM with ren-
dezvous sized messages. It appears that MPICH’s send per-
forms a “short-circuit” type optimization and bypasses the
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Figure 7. Total MPI cycles, including memcpys
5.3. Other Performance Impacts for (a) rendezvous sends;(b) eager sends (at
a much more detailed scale); (c) Conventional
MPI frequently requires memory copies to handle un-  memcpyIPC for varying copy sizes.
expected messages, pack data, assemble messages, and




perform shared memory communication. These memory7. Conclusions and Future Work
copies can account for a significant percentage of the total

time spentin MPI, especially for large message sends. Con-  This work is based on a PIM architecture that could form
ventional processors suffer significant performance degra-the basis for commodity cluster computing in the future.
dation when performing memory copies which exhaust their As such, it is important to consider the implications of this
cache. This effect is shown in Figuréc). A PowerPC G4 technology for current computing paradigms. This work
(32K L1 data cache) can perforrm@emcpy() oflessthan  presents an analysis of an initial implementation of MPI on
32K atan IPC close to 1.0. However, larger memory copies p|M architectures. Although the PIM architecture is explic-
show a performance drop, with IPCs less than 0.4. This dropitly designed for parallelism, it is not explicitly designed
in performance is a graphic depiction of hitting the “mem- to support MPI. Despite this, the preliminary analysis indi-
ory wall” and will only become more pronounced as the gap cates that a PIM architecture will support MPI very well,
between memory and processor speeds grows. and may reduce the complexity of the MPI implementation
PIM processors have several advantages when performyia inherent multi-threading. In terms of performance, MPI
ing memory copies. The first is that a PIM processor is for PIM requires fewer CPU cycles than equivalent com-
“closer” to memory. It does not have to go through sev- modity implementations for many of the operations. This
eral layers of cache, butis connected directly to the memoryis attributable to a significant reduction in total instructions
macro. Additionally, it is possible to copy a full DRAM row  (through the use of special features in the PIM) and an in-
at a time, which gives it dramatically higher bandwidth. By crease in instructions per cycle (IPC). Overall, this work
utilizing the architectural features of PIM to reduce mem- demonstrates that an MPI implementation for PIM is not
ory copy times, MPI time could be considerably reduced only possible, but is likely to perform at least as well as

(Figure7(a) and (b)). what is found on commodity systems.
Only a preliminary analysis is presented here. Future
6. Related Work work will focus on implementing more of the MPI stan-

dard to permit application simulation on the architectural
simulator and to further study MPI performance improve-
ments achievable with PIMs. For example, PIM instruction
gets will likely provide vector types of operations on ex-
tremely wide words. Additionally, the extremely high mem-

that have been built on networks that have remote DMA OFY bandwidth provided by PIMs may offer a significant win
(RDMA) capability, such as those described in [0, 17]. for applications using MPI derived datatypes. Also, PIMs

However, the traveling thread model is able to support someC@n offer extremely fine grained synchronization methods
features of MPI much more efficiently. that will allow automated exploitation of opportunities for

For example, most of the implementations of MPI on communication and computation overlap. For example, it

top of active messages require the process to poll the netMay be possible to allow adPI_Recv to return before all

work in order to process messages and activate messag@f the data has arri.ved.. Fing grained synchronization co_uld
handlers. This can lead to inefficiencies when the receiv- €N block the application if it attempted to access a portion

ing process is not running, and, in some cases, may violateOf the data that has not arrived. Finally, PIMs may also sup-

the progress rule of MPI. Hardware support for traveling po_rt the MPI-2 pne-sided communication f_unction_s very ef-
threads increases the ability of remote processing to occurICi€Ntly, especially the accumulate operation, which allows
on the arrival of messages without interference from the op- O 0Perations to be performed on remote data.
erating system and without requiring the receiving process
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